

(Some) Implementation Issues for Virtual Routers

Laurent Mathy (Lancaster U) with Norbert Egi and Mickael Hoerdt (Lancaster U) Adam Greenhalgh and Mark Handley (UCL)

Introduction

- Why? What for? (Motivation)
- Why now? (Enabling technologies)
- HOW??? (Design)

Motivation (1)

- Conventional router architecture
 - Closed router software market
 - Little potential for innovation
- One box fulfils the role of multiple routers
 - ✓ Independent and flexible management
 - ✓ Resource sharing
 - ✓ Lower hardware and support cost
 - E.g. Small businesses within the same building sharing the same router, each managing its own VR

Motivation (2)

- Multiple concurrent network architectures
 - ✓ Innovation in network architecture design
 - \checkmark Decoupling the providers from the physical network
- Excellent platform for experimentation

✓ Rolling out new and unstable solutions without risk

***** Single point of failure (pairing is needed)

Enabling technologies (1)

- Virtual machines on regular x86 PC hardware
 - XEN, VMware, etc.
 - Both Intel and AMD are adding virtualization extensions to their processors
- Inexpensive and powerful PC hardware
 - Forwards several Gbps even with min. sized packets
 - Sufficient capacity for most small and medium size businesses
- Future hardware trend
 - Massively Multi-core architecture
 - Advanced multi-queue NICs

Enabling technologies (2)

- XEN
 - Para-virtualization
 - VMs with performance close to native hardware
 - Excellent hardware support
 - Exploits Intel's and AMD's virtualization technologies

• Click Modular Router

- Running in the kernel
- Simple and small elements
- Plenty of elements ready to use
- Implement new elements is simple
- High performance (outperforms even native Linux)

Enabling technologies (3)

• XORP

- Extensibility (XRL mechanism)
- Flexible interface for the forwarding path (FEA)
- Supports most of the widespread routing and management protocols
- HEN (Heterogeneous Experimental Network)
 - $-\sim 100$ nodes
 - Wide range of network experiments
 - Remote power control

SW router: XORP + Click

Management Processes

Router virtualization (1)

Can conventional techniques for server virtualization be applied to network router virtualization?

Router virtualization (2)

Can conventional techniques for server virtualization be applied to network router virtualization? Not really.

Forwarding in the DomUs

Forwarding in Dom0 only

Virtual Routers

What to do then?

Virtual Routers

What to do then?

Virtual Routers

- Forwarding Path Virtualization
 - Forwarding decision
 - Different views of the same network
 - Large memory requirement for separated forwarding tables
 - Merge them into a single table residing in the physical forwarding path
 - Classification
 - Determine to which virtual router the packet belongs
 - Similar issues to forwarding
 - Queuing
 - No issue on memory size, but significant increase in complexity
 - Scheduling
 - Provide fairness and isolation among the virtual routers
 - Ensure that packets are handled the same way as if only a single virtual router occupied the whole physical hardware

Some Conclusions

- Forwarding in Dom0 for performance
 - As close as possible to HW
 - Loose Xen isolation!
 - Must do it yourself
 - But Click can't do it across CPUs yet...
- In general, must rethink functionality mapping in multi-core context
 - But first must understand implications
- Classification vs virtual Q support on NIC
- Many more open issues...
 - Output bias to avoid loosing packets on "empty queues", etc

Thank you for your attention!

© Scott Adams, Inc./Dist. by UFS, Inc.