Service-driven Network Virtualisation Through Multi-Topology Routing

Dr. Ning Wang

University of Surrey Guildford, UK <u>http://www.ee.surrey.ac.uk/CCSR/</u>

November 6, 2007, Brussels

Background

- Separation of value-added services from the physical network infrastructure
- Physically/logically partition the network resources for supporting heterogeneous services
 - > Physical resources: network bandwidth
 - Virtual resources: routing/forwarding tables, different policies for traffic treatment etc.

Network Planes (NPs)

- Slices of physical/logical network resources that are used for supporting heterogeneous services
- A multi-dimensional network resource engineering paradigm

Background

- Providing separate routing policies or decisions for different *types* of traffic
 - IPv4 vs. IPv6
 - Unicast vs. multicast
- Examples: Multi-topology OSPF (RFC 4915)

MTR for network virtualisation

- Providing separate routing policies or decisions for traffic *with different service requirements*
- Providing resilience support against traffic dynamics (upsurges) and physical link failures
- > Dynamic load balancing across multiple routing topologies
- Fast re-routing in case of link failures without waiting for IGP reconvergence

Overview

- Using multiple MT-IGP topologies for supporting distinct Network Planes (service differentiation)

- Using multiple *equivalent* MT-IGP topologies within one single NP for load balancing and resilience support

A Framework for MTR-based NP Engineering

- *Degree of Involvement (DoI)* of a link for an OD PoP pair is the number of times it is included in the shortest IGP paths in different MTR topologies for each OD pair.

- 23 PoP nodes
- 74 uni-directional links with bandwidth capacity of 155Mbps,
 2.4Gpbs 4.8Gbps and 10Gbps

• Performance metrics

- The proportion of OD pairs that can successfully avoid any critical link with *FDoI* (i.e., shared by all routing topologies

- Path length (as delay constraint for NP2)

	InvCap	Actual	⊿=6	$\Delta = INF$
Max_len	6	6	6	10
Avg_len	2.69	2.78	3.00	3.57

Input

- Optimised MTR link weights
- Traffic/network dynamics
- Output
 - Adjustment for splitting ratio for traffic assignment across multiple equivalent routing topologies within each NP
- Objectives
 - Load balancing of traffic across topologies at short time scale (e.g., hourly)
 - Perform fast rerouting to alternative routing topologies in case of link failures without waiting for IGP routing reconvergence
- Assume a centralised TE manager who:
 - knows the overall network topology
 - gathers and maintains the monitored network performance
 - Periodically calculates the optimised traffic splitting ratio
 - Instructs ingress PoP nodes to enforce the splitting ratio

- Identify the most utilised link l_{max} in the network
- For the set of traffic flows (i.e traffic demand between an S-D pair) that are routed through l_{max} in *at least one but not all* the routing topologies, consider each flow *f* at a time and *incrementally* compute its new traffic splitting ratio among the routing topologies (start from a small proportion demand of *f*, if succeed exponentially increase the proportion until no further improvements can be made by adjusting the splitting ratio of *f*
- Go to the next most utilised link and repeat the procedure until no further improvement can be made. The total number of iterations is bound by *K*

- Traffic Matrix Series
 - The GEANT network
 - > TM obtained every 15 minutes (Apr. 2005)
 - Test with traffic traces for 7 consecutive days (more than 600 distinct traffic matrices)
 - Dataset obtained from the TOTEM project

Slide 11

http://totem.info.ucl.ac.be/

- Performance metrics:
 - Maximum intra-domain link utilization (*MLU*)
 - Network cost (piece-wise linear function)
- Algorithm comparison:
 - Link weight setting inverse to capacity (InvCap)
 - Actual link weight setting by the operators (Actual)
 - Robust link weight setting considering multiple TMs (Multi-TM)

Slide 12

- Optimal

GEANT Performance (Max. Link Utilisation)

Slide 13

	AMU	НМИ	PNO
Optimal	30.05%	52.82%	-
InvCap	45.72%	94.41%	1.6%
Actual	55.47%	96.91%	0%
Multi-TM	48.56%	100.04%	0.44%
NP1 (2T, ⊿ = INF)	42.9%	92.61%	13.08%
NP1 (3T, ⊿ = INF)	31.95%	60.36%	78.34%
NP1 (4T, ⊿ = INF)	30.08%	52.88%	99.56%
NP2 (2T, ⊿ = 6)	41.85%	94.41%	17%
NP2 (3T, ⊿ = 6)	36.63%	60.61%	26.02%
NP2 (4T, ⊿ = 6)	31.86%	60.22%	78.78%

Average maximum link utilization (AMU): the average value of the *MLU* across all the traffic matrices during the seven-day period;

Highest maximum link utilization (HMU): the highest value of the *MLU* across all the traffic matrices during the period.

Proportion to near-optimal performance (PNO): the percentage over all the traffic matrices in which our scheme can achieve near-optimal performance. We define here the meaning of near-optimal to be the *MLU* that is within 3% of gap to the optimality.

Motivation

- Network virtualisation through multi-topology IGP routing
- To achieve service differentiation across multiple Network Planes
- To enable dynamic traffic control against traffic burst and single link failures

• Algorithm comparison:

- A two phase NP engineering scheme is designed and implemented
 - Offline optimisation of MTR link weight for maximising path diversity within a domain
 - Short-time scale traffic control according to the monitored performance against traffic dynamics

Outcome

- Simulation experiments based on operational network topology show that near-optimal TE performance can be obtained with only a few multi-topology routing topologies